Skip to main content

Amazon Elastic MapReduce

Amazon Elastic MapReduce Pricing

China (Ningxia) Region

Pricing for Amazon EC2 and Amazon EMR

Pricing for Amazon EC2 and Amazon EMR

With Amazon EMR you only pay for what you use. Amazon EMR pricing is in addition to pricing for EC2 and S3. We charge less where our costs are less, and your cost will depend on the number and type of Amazon EC2 Instances in your job flow and the amount of time it is running.

Instance Type

Amazon EC2 Price (per hour)

Amazon EMR Price (per hour)

General Purpose - Current Generation

   

m5.xlarge

¥1.356

¥0.318

m5.2xlarge

¥2.711

¥0.637

m5.4xlarge

¥5.422

¥1.275

m5.8xlarge

¥10.844

¥1.793

m5.12xlarge

¥16.266

¥1.793

m5.16xlarge

¥21.688

¥1.793

m5.24xlarge

¥32.532

¥1.793

m5a.xlarge

¥1.219

¥0.286

m5a.2xlarge

¥2.437

¥0.572

m5a.4xlarge

¥4.874

¥1.143

m5a.8xlarge

¥9.749

¥1.793

m5a.12xlarge

¥14.623

¥1.793

m5a.16xlarge

¥19.497

¥1.793

m5a.24xlarge

¥29.246

¥1.793

m5d.xlarge

¥1.657

¥0.378

m5d.2xlarge

¥3.313

¥0.75

m5d.4xlarge

¥6.627

¥1.5

m5d.8xlarge

¥13.254

¥1.793

m5d.12xlarge

¥19.881

¥1.793

m5d.16xlarge

¥26.508

¥1.793

m5d.24xlarge

¥39.762

¥1.793

m6g.xlarge

¥1.0762

¥0.259

m6g.2xlarge

¥2.1524

¥0.511

m6g.4xlarge

¥4.3048

¥1.023

m6g.8xlarge

¥8.6095

¥2.045

m6g.12xlarge

¥12.9143

¥3.068

m6g.16xlarge

¥17.2191

¥4.09

m7g.xlarge

¥1.0762

¥0.270912

m7g.2xlarge

¥2.1524

¥0.541824

m7g.4xlarge

¥4.3048

¥1.083648

m7g.8xlarge

¥8.6095

¥2.167296

m7g.12xlarge

¥12.9143

¥3.250944

m7g.16xlarge

¥17.2191

¥4.334592

m8g.xlarge

¥1.07619

¥0.2980032

m8g.2xlarge

¥2.15238

¥0.5960064

m8g.4xlarge

¥4.30476

¥1.1920128

m8g.8xlarge

¥8.60953

¥2.3840256

m8g.12xlarge

¥12.91429

¥3.5760384

m8g.16xlarge

¥17.21906

¥4.7680512

m8g.24xlarge

¥25.82859

¥7.1520768

m8g.48xlarge

¥51.65718

¥14.3041536

General Purpose - Previous Generation

   

m4.large

¥0.8078

¥0.187

m4.xlarge

¥1.6157

¥0.372

m4.2xlarge

¥3.2313

¥0.745

m4.4xlarge

¥6.4626

¥1.49

m4.10xlarge

¥16.1566

¥1.68

m4.16xlarge

¥25.8505

¥1.68

m6i.xlarge

¥1.35551

¥0.31872

m6i.2xlarge

¥2.71102

¥0.63744

m6i.4xlarge

¥5.42203

¥1.27488

m6i.8xlarge

¥10.84406

¥2.54976

m6i.12xlarge

¥16.2661

¥3.82464

m6i.16xlarge

¥21.68813

¥5.09952

m6i.24xlarge

¥32.53219

¥7.64928

m6i.32xlarge

¥43.37626

¥10.19904

Compute Optimized - Current Generation

   

c5.xlarge

¥0.986

¥0.283

c5.2xlarge

¥1.972

¥0.565

c5.4xlarge

¥3.943

¥1.129

c5.9xlarge

¥8.872

¥1.793

c5.12xlarge

¥11.83

¥1.793

c5.18xlarge

¥17.745

¥1.793

c5.24xlarge

¥23.66

¥1.793

c5a.xlarge

¥0.89

¥0.25564

c5a.2xlarge

¥1.78

¥0.51128

c5a.4xlarge

¥3.56

¥1.02256

c5a.8xlarge

¥7.12

¥1.793

c5a.12xlarge

¥10.68

¥1.793

c5a.16xlarge

¥14.24

¥1.793

c5a.24xlarge

¥21.36

¥1.793

c5d.xlarge

¥1.191

¥0.319

c5d.2xlarge

¥2.382

¥0.638

c5d.4xlarge

¥4.765

¥1.275

c5d.9xlarge

¥10.721

¥1.793

c5d.18xlarge

¥21.442

¥1.793

c6g.xlarge

¥0.7832

¥0.226

c6g.2xlarge

¥1.5664

¥0.452

c6g.4xlarge

¥3.1327

¥0.903

c6g.8xlarge

¥6.2655

¥1.806

c6g.12xlarge

¥9.3982

¥2.709

c6g.16xlarge

¥12.5309

¥3.612

c6gd.xlarge

¥0.953

¥0.254976

c6gd.2xlarge

¥1.9059

¥0.509952

c6gd.4xlarge

¥3.8119

¥1.019904

c6gd.8xlarge

¥7.6237

¥2.039808

c6gd.12xlarge

¥11.4356

¥3.059712

c6gd.16xlarge

¥15.2474

¥4.079616

c6i.xlarge

¥0.98582

¥0.2822

c6i.2xlarge

¥1.97165

¥0.5644

c6i.4xlarge

¥3.9433

¥1.1288

c6i.8xlarge

¥7.88659

¥2.2576

c6i.12xlarge

¥11.82989

¥3.3864

c6i.16xlarge

¥15.77318

¥4.5152

c6i.24xlarge

¥23.65978

¥6.7728

c6i.32xlarge

¥31.54637

¥9.0304

c6in.xlarge

¥1.77448

¥0.376488

c6in.2xlarge

¥3.54897

¥0.752976

c6in.4xlarge

¥7.09793

¥1.505952

c6in.8xlarge

¥14.19587

¥3.011904

c6in.12xlarge

¥21.2938

¥4.517856

c6in.16xlarge

¥28.39173

¥6.023808

c6in.24xlarge

¥42.5876

¥9.035712

c6in.32xlarge

¥56.78346

¥12.047616

c7g.xlarge

¥0.7832

¥0.2407

c7g.2xlarge

¥1.5664

¥0.4814

c7g.4xlarge

¥3.1327

¥0.9628

c7g.8xlarge

¥6.2655

¥1.9256

c7g.12xlarge

¥9.3982

¥2.8884

c7g.16xlarge

¥12.5309

¥3.8512

c8g.xlarge

¥0.78318

¥0.2648032

c8g.2xlarge

¥1.56636

¥0.5296064

c8g.4xlarge

¥3.13273

¥1.0592128

c8g.8xlarge

¥6.26546

¥2.1184256

c8g.12xlarge

¥9.39819

¥3.1776384

c8g.16xlarge

¥12.53092

¥4.2368512

c8g.24xlarge

¥18.79638

¥6.3552768

c8g.48xlarge

¥37.59276

¥12.7105536

Compute Optimized - Previous Generation

 

c4.large

¥0.678

¥0.164

c4.xlarge

¥1.356

¥0.325

c4.2xlarge

¥2.711

¥0.652

c4.4xlarge

¥5.422

¥1.304

c4.8xlarge

¥10.844

¥1.68

c6gn.xlarge

¥0.99513

¥0.286848

c6gn.2xlarge

¥1.99027

¥0.573696

c6gn.4xlarge

¥3.98054

¥1.147392

c6gn.8xlarge

¥7.96108

¥2.294784

c6gn.12xlarge

¥11.94161

¥3.442176

c6gn.16xlarge

¥15.92215

¥4.589568

Memory Optimized - Current Generation

   

r5.xlarge

¥1.766

¥0.419

r5.2xlarge

¥3.533

¥0.837

r5.4xlarge

¥7.065

¥1.674

r5.8xlarge

¥14.13

¥1.793

r5.12xlarge

¥21.195

¥1.793

r5.16xlarge

¥28.26

¥1.793

r5.24xlarge

¥42.39

¥1.793

r5a.xlarge

¥1.59

¥0.378

r5a.2xlarge

¥3.179

¥0.75

r5a.4xlarge

¥6.359

¥1.501

r5a.8xlarge

¥12.717

¥1.793

r5a.12xlarge

¥19.076

¥1.793

r5a.16xlarge

¥25.434

¥1.793

r5a.24xlarge

¥38.151

¥1.793

r5d.xlarge

¥2.067

¥0.479

r5d.2xlarge

¥4.135

¥0.957

r5d.4xlarge

¥8.27

¥1.793

r5d.8xlarge

¥16.54

¥1.793

r5d.12xlarge

¥24.81

¥1.793

r5d.16xlarge

¥33.08

¥1.793

r5d.24xlarge

¥49.62

¥1.793

r6g.xlarge

¥1.4021

¥0.335

r6g.2xlarge

¥2.8041

¥0.669

r6g.4xlarge

¥5.6082

¥1.339

r6g.8xlarge

¥11.2165

¥2.677

r6g.12xlarge

¥16.8247

¥4.016

r6g.16xlarge

¥22.433

¥5.354

r6gd.xlarge

¥1.654

¥0.382464

r6gd.2xlarge

¥3.308

¥0.764928

r6gd.4xlarge

¥6.616

¥1.529856

r6gd.8xlarge

¥13.2319

¥3.059712

r6gd.12xlarge

¥19.8479

¥4.589568

r6gd.16xlarge

¥26.4639

¥6.119424

r7g.xlarge

¥1.4021

¥0.355572

r7g.2xlarge

¥2.8041

¥0.711144

r7g.4xlarge

¥5.6082

¥1.422288

r7g.8xlarge

¥11.2165

¥2.844576

r7g.12xlarge

¥16.8247

¥4.266864

r7g.16xlarge

¥22.433

¥5.689152

r8g.xlarge

¥1.40206

¥0.3911624

r8g.2xlarge

¥2.80412

¥0.7823248

r8g.4xlarge

¥5.60824

¥1.5646496

r8g.8xlarge

¥11.21649

¥3.1292992

r8g.12xlarge

¥16.82473

¥4.6939488

r8g.16xlarge

¥22.43297

¥6.2585984

r8g.24xlarge

¥33.64946

¥9.3878976

r8g.48xlarge

¥67.29892

¥18.7757952

x1.16xlarge

¥46.147

¥11.07054

x1.32xlarge

¥92.294

¥22.14108

x2idn.16xlarge

¥46.14204

¥11.07054

x2idn.24xlarge

¥69.21306

¥16.60581

x2idn.32xlarge

¥92.28408

¥22.14108

x2iedn.xlarge

¥5.76776

¥1.3838258

x2iedn.2xlarge

¥11.53551

¥2.767635

x2iedn.4xlarge

¥23.07102

¥5.53527

x2iedn.8xlarge

¥46.14204

¥11.07054

x2iedn.16xlarge

¥92.28408

¥22.14108

x2iedn.24xlarge

¥138.42612

¥33.21162

x2iedn.32xlarge

¥184.56816

¥44.28216

z1d.xlarge

¥2.684

¥0.618

z1d.2xlarge

¥5.367

¥1.235

z1d.3xlarge

¥8.051

¥1.793

z1d.6xlarge

¥16.102

¥1.793

z1d.12xlarge

¥32.204

¥1.793

Memory Optimized - Previous Generation

   

r4.xlarge

¥2.6289

¥0.417

r4.2xlarge

¥5.2577

¥0.828

r4.4xlarge

¥10.5155

¥1.655

r4.8xlarge

¥21.0309

¥1.68

r4.16xlarge

¥42.0618

¥1.68

r6i.xlarge

¥1.76627

¥0.41832

r6i.2xlarge

¥3.53254

¥0.83664

r6i.4xlarge

¥7.06507

¥1.67328

r6i.8xlarge

¥14.13014

¥3.34656

r6i.12xlarge

¥21.19522

¥5.01984

r6i.16xlarge

¥28.26029

¥6.69312

r6i.24xlarge

¥42.39043

¥10.03968

r6i.32xlarge

¥56.52058

¥13.38624

Storage Optimized - Current Generation

   

i3.xlarge

¥2.341

¥0.518

i3.2xlarge

¥4.683

¥1.036

i3.4xlarge

¥9.365

¥1.793

i3.8xlarge

¥18.731

¥1.793

i3.16xlarge

¥37.461

¥1.793

i3en.xlarge

¥3.382

¥0.75032

i3en.2xlarge

¥6.764

¥1.50064

i3en.3xlarge

¥10.146

¥1.793

i3en.6xlarge

¥20.292

¥1.793

i3en.12xlarge

¥40.583

¥1.793

i3en.24xlarge

¥81.166

¥1.793

i4i.xlarge

¥2.728

¥0.56938

i4i.2xlarge

¥5.457

¥1.13876

i4i.4xlarge

¥10.914

¥2.27918

i4i.8xlarge

¥21.827

¥4.55836

i4i.12xlarge

¥32.741

¥6.83588

i4i.16xlarge

¥43.654

¥9.11506

i4i.24xlarge

¥65.48172

¥13.673088

i4i.32xlarge

¥87.30895

¥18.230784

Storage Optimized - Previous Generation

   

d2.xlarge

¥5.401

¥1.077

d2.2xlarge

¥10.803

¥1.68

d2.4xlarge

¥21.606

¥1.68

d2.8xlarge

¥43.212

¥1.68

You are charged per-second from the time your cluster starts until it is terminated, with a one-minute minimum.

Amazon EMR Additional Pricing Details

Amazon S3 is billed separately. (Many customers store their input and output data in S3; others store all of the data locally on HDFS.) The more data you store, the lower the monthly price per GB.

China (Beijing) Region

Pricing for Amazon EC2 and Amazon EMR

With Amazon EMR you only pay for what you use. Amazon EMR pricing is in addition to pricing for EC2 and S3. We charge less where our costs are less, and your cost will depend on the number and type of Amazon EC2 Instances in your job flow and the amount of time it is running.

Instance Type

Amazon EC2 Price (per hour)

Amazon EMR Price (per hour)

General Purpose - Current Generation

   

m5.xlarge

¥2.026

¥0.318

m5.2xlarge

¥4.053

¥0.637

m5.4xlarge

¥8.106

¥1.275

m5.8xlarge

¥16.211

¥1.793

m5.12xlarge

¥24.317

¥1.793

m5.16xlarge

¥32.423

¥1.793

m5.24xlarge

¥48.634

¥1.793

m5a.xlarge

¥1.821

¥0.286

m5a.2xlarge

¥3.642

¥0.572

m5a.4xlarge

¥7.284

¥1.143

m5a.8xlarge

¥14.568

¥1.793

m5a.12xlarge

¥21.852

¥1.793

m5a.16xlarge

¥29.137

¥1.793

m5a.24xlarge

¥43.705

¥1.793

m5d.xlarge

¥2.547

¥0.378

m5d.2xlarge

¥5.093

¥0.75

m5d.4xlarge

¥10.187

¥1.5

m5d.8xlarge

¥20.374

¥1.793

m5d.12xlarge

¥30.561

¥1.793

m5d.16xlarge

¥40.747

¥1.793

m5d.24xlarge

¥61.121

¥1.793

m6g.xlarge

¥1.6074

¥0.259

m6g.2xlarge

¥3.2149

¥0.511

m6g.4xlarge

¥6.4298

¥1.023

m6g.8xlarge

¥12.8595

¥2.045

m6g.12xlarge

¥19.2893

¥3.068

m6g.16xlarge

¥25.7191

¥4.09

m7g.xlarge

¥1.7225

¥0.270912

m7g.2xlarge

¥3.4449

¥0.541824

m7g.4xlarge

¥6.8898

¥1.083648

m7g.8xlarge

¥13.7796

¥2.167296

m7g.12xlarge

¥20.6694

¥3.250944

m7g.16xlarge

¥27.5593

¥4.334592

m8g.xlarge

¥1.72245

¥0.2980032

m8g.2xlarge

¥3.44491

¥0.5960064

m8g.4xlarge

¥6.88981

¥1.1920128

m8g.8xlarge

¥13.77963

¥2.3840256

m8g.12xlarge

¥20.66944

¥3.5760384

m8g.16xlarge

¥27.55926

¥4.7680512

m8g.24xlarge

¥41.33889

¥7.1520768

m8g.48xlarge

¥82.67777

¥14.3041536

General Purpose - Previous Generation

   

m1.small

¥0.442

¥0.069

m3.xlarge

¥3.471

¥0.436

m3.2xlarge

¥6.942

¥0.871

m4.large

¥1.405

¥0.187

m4.xlarge

¥2.815

¥0.372

m4.2xlarge

¥5.624

¥0.745

m4.4xlarge

¥11.248

¥1.49

m4.10xlarge

¥28.121

¥1.68

m4.16xlarge

¥44.995

¥1.793

m6i.xlarge

¥2.02642

¥0.31872

m6i.2xlarge

¥4.05283

¥0.63744

m6i.4xlarge

¥8.10566

¥1.27488

m6i.8xlarge

¥16.21133

¥2.54976

m6i.12xlarge

¥24.31699

¥3.82464

m6i.16xlarge

¥32.42266

¥5.09952

m6i.24xlarge

¥48.63398

¥7.64928

m6i.32xlarge

¥64.84531

¥10.19904

Compute Optimized - Current Generation

   

c5.xlarge

¥1.479

¥0.283

c5.2xlarge

¥2.957

¥0.565

c5.4xlarge

¥5.915

¥1.129

c5.9xlarge

¥13.309

¥1.793

c5.12xlarge

¥17.745

¥1.793

c5.18xlarge

¥26.617

¥1.793

c5.24xlarge

¥35.49

¥1.793

c5a.xlarge

¥1.328

¥0.25564

c5a.2xlarge

¥2.656

¥0.51128

c5a.4xlarge

¥5.312

¥1.02256

c5a.8xlarge

¥10.625

¥1.793

c5a.12xlarge

¥15.937

¥1.793

c5a.16xlarge

¥21.25

¥1.793

c5a.24xlarge

¥31.875

¥1.793

c5d.xlarge

¥1.821

¥0.319

c5d.2xlarge

¥3.642

¥0.638

c5d.4xlarge

¥7.284

¥1.275

c5d.9xlarge

¥16.389

¥1.793

c5d.12xlarge

¥21.852

¥1.793

c5d.18xlarge

¥32.779

¥1.793

c5d.24xlarge

¥43.705

¥1.793

c6g.xlarge

¥1.172

¥0.226

c6g.2xlarge

¥2.3441

¥0.452

c6g.4xlarge

¥4.6881

¥0.903

c6g.8xlarge

¥9.3763

¥1.806

c6g.12xlarge

¥14.0644

¥2.709

c6g.16xlarge

¥18.7526

¥3.612

c6i.xlarge

¥1.47874

¥0.2822

c6i.2xlarge

¥2.95747

¥0.5644

c6i.4xlarge

¥5.91494

¥1.1288

c6i.8xlarge

¥11.82989

¥2.2576

c6i.12xlarge

¥17.74483

¥3.3864

c6i.16xlarge

¥23.65978

¥4.5152

c6i.24xlarge

¥35.48966

¥6.7728

c6i.32xlarge

¥47.31955

¥9.0304

c7g.xlarge

¥1.2569

¥0.2407

c7g.2xlarge

¥2.5139

¥0.4814

c7g.4xlarge

¥5.0277

¥0.9628

c7g.8xlarge

¥10.0554

¥1.9256

c7g.12xlarge

¥15.0831

¥2.8884

c7g.16xlarge

¥20.1108

¥3.8512

c8g.xlarge

¥1.25693

¥0.2648032

c8g.2xlarge

¥2.51385

¥0.5296064

c8g.4xlarge

¥5.0277

¥1.0592128

c8g.8xlarge

¥10.0554

¥2.1184256

c8g.12xlarge

¥15.08311

¥3.1776384

c8g.16xlarge

¥20.11081

¥4.2368512

c8g.24xlarge

¥30.16621

¥6.3552768

c8g.48xlarge

¥60.33243

¥12.7105536

Compute Optimized - Previous Generation

 

c3.xlarge

¥2.109

¥0.33

c3.2xlarge

¥4.217

¥0.654

c3.4xlarge

¥8.434

¥1.307

c3.8xlarge

¥16.869

¥1.68

c4.large

¥1.134

¥0.164

c4.xlarge

¥2.268

¥0.325

c4.2xlarge

¥4.535

¥0.652

c4.4xlarge

¥9.071

¥1.304

c4.8xlarge

¥18.141

¥1.68

c6gn.xlarge

¥1.48914

¥0.286848

c6gn.2xlarge

¥2.97828

¥0.573696

c6gn.4xlarge

¥5.95657

¥1.147392

c6gn.8xlarge

¥11.91314

¥2.294784

c6gn.12xlarge

¥17.8697

¥3.442176

c6gn.16xlarge

¥23.82627

¥4.589568

Memory Optimized - Current Generation

   

r5.xlarge

¥2.437

¥0.419

r5.2xlarge

¥4.874

¥0.837

r5.4xlarge

¥9.749

¥1.674

r5.8xlarge

¥19.497

¥1.793

r5.12xlarge

¥29.246

¥1.793

r5.16xlarge

¥38.995

¥1.793

r5.24xlarge

¥58.492

¥1.793

r5a.xlarge

¥2.193

¥0.378

r5a.2xlarge

¥4.387

¥0.75

r5a.4xlarge

¥8.774

¥1.501

r5a.8xlarge

¥17.548

¥1.793

r5a.12xlarge

¥26.322

¥1.793

r5a.16xlarge

¥35.095

¥1.793

r5a.24xlarge

¥52.643

¥1.793

r5d.xlarge

¥2.957

¥0.479

r5d.2xlarge

¥5.915

¥0.957

r5d.4xlarge

¥11.83

¥1.793

r5d.8xlarge

¥23.66

¥1.793

r5d.12xlarge

¥35.49

¥1.793

r5d.16xlarge

¥47.32

¥1.793

r5d.24xlarge

¥70.979

¥1.793

r6g.xlarge

¥1.9333

¥0.335

r6g.2xlarge

¥3.8666

¥0.669

r6g.4xlarge

¥7.7332

¥1.339

r6g.8xlarge

¥15.4665

¥2.677

r6g.12xlarge

¥23.1997

¥4.016

r6g.16xlarge

¥30.933

¥5.354

r6gd.xlarge

¥2.3413

¥0.382464

r6gd.2xlarge

¥4.6827

¥0.764928

r6gd.4xlarge

¥9.3653

¥1.529856

r6gd.8xlarge

¥18.7307

¥3.059712

r6gd.12xlarge

¥28.096

¥4.589568

r6gd.16xlarge

¥37.4613

¥6.119424

r7g.xlarge

¥2.073

¥0.355572

r7g.2xlarge

¥4.1459

¥0.711144

r7g.4xlarge

¥8.2919

¥1.422288

r7g.8xlarge

¥16.5838

¥2.844576

r7g.12xlarge

¥24.8756

¥4.266864

r7g.16xlarge

¥33.1675

¥5.689152

r8g.xlarge

¥2.07297

¥0.3911624

r8g.2xlarge

¥4.14594

¥0.7823248

r8g.4xlarge

¥8.29188

¥1.5646496

r8g.8xlarge

¥16.58375

¥3.1292992

r8g.12xlarge

¥24.87563

¥4.6939488

r8g.16xlarge

¥33.1675

¥6.2585984

r8g.24xlarge

¥49.75125

¥9.3878976

r8g.48xlarge

¥99.5025

¥18.7757952

x1.16xlarge

¥68.876

¥11.07054

x1.32xlarge

¥137.752

¥22.14108

x2idn.16xlarge

¥68.87076

¥11.07054

x2idn.24xlarge

¥103.30614

¥16.60581

x2idn.32xlarge

¥137.74152

¥22.14108

x2iedn.xlarge

¥8.60885

¥1.3838258

x2iedn.2xlarge

¥17.21769

¥2.767635

x2iedn.4xlarge

¥34.43538

¥5.53527

x2iedn.8xlarge

¥68.87076

¥11.07054

x2iedn.16xlarge

¥137.74152

¥22.14108

x2iedn.24xlarge

¥206.61228

¥33.21162

x2iedn.32xlarge

¥275.48304

¥44.28216

Memory Optimized - Previous Generation

   

r3.xlarge

¥4.9018

¥0.56

r3.2xlarge

¥9.8036

¥1.12

r3.4xlarge

¥19.6073

¥1.68

r3.8xlarge

¥39.2147

¥1.68

r4.xlarge

¥3.924

¥0.417

r4.2xlarge

¥7.842

¥0.828

r4.4xlarge

¥15.683

¥1.655

r4.8xlarge

¥31.373

¥1.68

r4.16xlarge

¥62.746

¥1.68

r6i.xlarge

¥2.43718

¥0.41832

r6i.2xlarge

¥4.87435

¥0.83664

r6i.4xlarge

¥9.7487

¥1.67328

r6i.8xlarge

¥19.49741

¥3.34656

r6i.12xlarge

¥29.24611

¥5.01984

r6i.16xlarge

¥38.99482

¥6.69312

r6i.24xlarge

¥58.49222

¥10.03968

r6i.32xlarge

¥77.98963

¥13.38624

Storage Optimized - Current Generation

   

i3.xlarge

¥3.122

¥0.51792

i3.2xlarge

¥6.244

¥0.517

i3.4xlarge

¥12.487

¥1.035

i3.8xlarge

¥24.974

¥1.793

i3.16xlarge

¥49.948

¥1.793

i3en.xlarge

¥4.525

¥0.75032

i3en.2xlarge

¥9.05

¥1.50064

i3en.3xlarge

¥13.576

¥1.793

i3en.6xlarge

¥27.151

¥1.793

i3en.12xlarge

¥54.302

¥1.793

i3en.24xlarge

¥108.605

¥1.793

i4i.xlarge

¥3.639

¥0.56938

i4i.2xlarge

¥7.278

¥1.13876

i4i.4xlarge

¥14.555

¥2.27918

i4i.8xlarge

¥29.11

¥4.55836

i4i.12xlarge

¥43.665

¥6.83588

i4i.16xlarge

¥58.221

¥9.11506

i4i.24xlarge

¥87.33086

¥13.673088

i4i.32xlarge

¥116.44115

¥18.230784

Storage Optimized - Previous Generation

   

d2.xlarge

¥6.673

¥1.077

d2.2xlarge

¥13.345

¥1.68

d2.4xlarge

¥26.69

¥1.68

d2.8xlarge

¥53.38

¥1.68

i2.xlarge

¥10.204

¥1.325

i2.2xlarge

¥20.407

¥1.68

i2.4xlarge

¥40.815

¥1.68

i2.8xlarge

¥81.63

¥1.68

You are charged per-second from the time your cluster starts until it is terminated, with a one-minute minimum.

Amazon EMR Additional Pricing Details

Amazon S3 is billed separately. (Many customers store their input and output data in S3; others store all of the data locally on HDFS.) The more data you store, the lower the monthly price per GB.

Pricing for Amazon EMR on Amazon EKS

This pricing is for Amazon EMR on Amazon EKS clusters.

The Amazon EMR price is in addition to the Amazon EKS pricing or any other services used with Amazon EKS. You can run EKS on Amazon Web Services using either EC2 or Amazon Fargate. If you are using Amazon EC2 (including with EKS managed node groups), you pay for Amazon Web Services resources (e.g., EC2 instances or Amazon EBS volumes) you create to run your Kubernetes worker nodes. See detailed pricing information on the Amazon EC2 pricing page. If you are using Amazon Fargate, pricing is calculated based on the vCPU and memory resources used from the time you start to download your container image until the Amazon EKS pod terminates, rounded up to the nearest second. A minimum charge of 1 minute applies. See detailed pricing information on the Amazon Fargate pricing page.

Amazon EMR pricing on EKS is calculated based on the vCPU and memory resources used from the time you start to download your EMR application image until the Amazon EKS Pod terminates, rounded up to the nearest second. Pricing is based on requested vCPU and memory resources for the Task or Pod. 

 

Type China (Ningxia) Region China (Beijing) Region
Per vCPU per Hour ¥ 0.0902975 ¥ 0.0902975
Per GB per Hour ¥ 0.00995675 ¥ 0.00995675

Pricing Example

Pricing based on China (Beijing) Region pricing.

Suppose you are running an EMR-Spark application deployed on Amazon EKS. In this case, EKS gets its compute capacity using r5.2xlarge EC2 instances (8 vCPU, 64 GB RAM). Let’s assume that the EKS cluster has 100 nodes, totaling 800 vCPU, and 6400GB of total memory. Let’s assume that that application utilizes 100 VCPUs and 300GB of memory for 30 minutes.

Total EMR uplift charges for the job:

  • Total Uplift on vCPU = (100 * ¥0.0902975 * 0.5) = (number of vCPU * per vCPU-hours rate * job runtime in hour) = ¥4.51
  • Total Uplift on memory = (300 * ¥0.00995675 * 0.5) = (amount of memory used * per GB-hours rate * job runtime in hour) = ¥1.49
  • Total EMR Uplift for the EMR job = ¥6.01

Additional Costs

You pay ¥0.688 per hour for each Amazon EKS cluster that you create. You can use a single Amazon EKS cluster to run multiple applications by taking advantage of Kubernetes namespaces and IAM security policies. You can run EKS on Amazon Web Services using either Amazon EC2 or Amazon Fargate.

If you are using EC2 (including with EKS managed node groups), you pay for Amazon Web Services resources (e.g., EC2 instances or EBS volumes) you create to run your Kubernetes worker nodes. You only pay for what you use, as you use it. There are no minimum fees and no upfront commitments. See detailed pricing information on the Amazon EC2 pricing page.

If you are using Amazon Fargate, pricing is calculated based on the vCPU and memory resources used from the time you start to download your container image until the Amazon EKS pod terminates, rounded up to the nearest second. A minimum charge of 1 minute applies. See detailed pricing information on the Amazon Fargate pricing page

Pricing for Amazon EMR Serverless

This pricing is for EMR Serverless. 

With EMR Serverless, there are no upfront costs, and you pay for only the resources you use. You pay for the amount of vCPU, memory, and storage resources consumed by your applications.

With EMR Serverless, you create an application using an open-source framework version and then submit jobs to the application. As part of the job specification, you can provide the minimum and maximum number of concurrent workers, as well as the vCPU, memory, and storage for each worker. EMR automatically adds and removes workers based on what the job requires within your specified limits. The three dimensions of compute, memory, and storage for workers can be independently configured. You can choose from 1 vCPU, 2 vCPU, 4 vCPU, 8 vCPU, to 16 vCPU per worker, memory from 2 GB to 120 GB per worker in 1 GB to 8 GB increments, and storage from 20 GB to 200 GB.

You are charged for aggregate vCPU, memory, and storage resources used from the time workers are ready to run your workload until the time they stop, rounded up to the nearest second with a 1-minute minimum. If you set up your application to start workers at application startup, the requested workers will start when you start your application and end when you stop the application, or when the application remains idle.

Note: When using custom images, you are charged for aggregate vCPU, memory, and storage resources used from the time EMR Serverless starts downloading the image until the workers are stopped, rounded up to the nearest second with a 1-minute minimum.

Pricing details (compute and memory)

Pricing is based on vCPU, memory, and storage resources used by workers, aggregated across all workers.

Linux/x86

Dimension China (Ningxia) Region China (Beijing) Region
Per vCPU per Hour ¥ 0.324935 ¥ 0.469547
Per GB per Hour ¥ 0.0357071 ¥ 0.0517751

Linux/ARM

Dimension China (Ningxia) Region China (Beijing) Region
Per vCPU per Hour ¥ 0.276422 ¥ 0.38859
Per GB per Hour ¥ 0.030353 ¥ 0.04265

Pricing details (ephemeral storage)

20 GB of ephemeral storage is available for all workers by default—you pay only for any additional storage that you configure per worker.

Dimension China (Ningxia) Region China (Beijing) Region
Per storage GB per Hour ¥ 0.000738 ¥ 0.000829

Supported worker configurations

CPU Memory Values Ephemeral Storage
1 vCPU Min. 2 GB and Max. 8 GB, in 1 GB increments 20 GB - 200 GB
2 vCPU Min. 4 GB and Max. 16 GB, in 1 GB increments 20 GB - 200 GB
4 vCPU Min. 8 GB and Max. 30 GB, in 1 GB increments 20 GB - 200 GB
8 vCPU Min. 16 GB and Max. 60 GB, in 4 GB increments 20 GB - 200 GB
16 vCPU Min. 32 GB and Max. 120 GB, in 8 GB increments 20 GB - 200 GB

Duration

Duration is calculated from the time a worker is ready to run your workload until the time it stops, rounded up to the nearest second with a 1-minute minimum.

Additional charges

You may incur additional charges if your applications use other services of Amazon Web Services. For example, if your application uses Amazon Simple Storage Service (S3) to store and process data, then you will be charged standard Amazon S3 rates. If you move data from sources such as Amazon S3, Amazon Relational Database Service (RDS), or Amazon Redshift, you are charged standard request and data transfer rates. If you use Amazon CloudWatch, you are charged standard rates for CloudWatch logs and CloudWatch events.

Pricing Examples

Suppose you submit a Spark job to EMR Serverless. Let’s assume that the job is configured to use a minimum of 25 workers and a maximum of 75 workers, each configured with 4VCPU and 30GB of memory. Consider that no additional ephemeral storage was configured. If your job runs for 30 minutes using 25 workers (or 100 vCPU) and was automatically scaled to add 50 more workers (200 more vCPU) for 15 minutes:

Total vCPU-hours cost = (100 * ¥ 0.0902975 * 0.5) + (200 * ¥ 0.0902975 * 0.25) = (number of vCPU * per vCPU-hours rate * job runtime in hour) = ¥ 9.02975

Total GB-hours = (750 * ¥ 0.00995675 * 0.5) + (1500 * ¥ 0.00995675 * 0.25) = (Total GB of memory configured * per GB-hours rate * job runtime in hour) = ¥ 7.4675625

Total EMR Serverless Charges = ¥ 9.02975 + ¥ 7.4675625 = ¥ 16.4973125

Additional Charges: If your application uses other services of Amazon Web Services such as Amazon S3, you are charged standard S3 rates.